Suites et Séries de Fonctions

P.Gosse

21 mars 2021

Table des matières

1	Suites de Fonctions	
	1.1	généralités
	1.2	Théorèmes de la convergence uniforme
	1.3	Applications de la convergence uniforme
2	2.1 2.2	ies de Fonctions généralités

1 Suites de Fonctions

1.1 généralités

Définition 1.1.1. Soit \mathcal{F} un ensemble de fonctions définies au moins sur un sous-ensemble commun D de \mathbb{R} à valeurs dans \mathbb{R} ou \mathbb{C} . On appelle *suite de fonctions* de \mathcal{F} toute application de \mathbb{N} dans \mathcal{F} :

$$\begin{cases} \mathbb{N} & \to \mathcal{F} \\ n & \mapsto f_n \end{cases}$$

On note $(f_n)_{n\in\mathbb{N}}$ ou (f_n) une telle suite.

Exemple 1.1.1. (f_n) définie pour tout $n \in \mathbb{N}$ sur \mathbb{R}_+ par $f_n(x) = \frac{5+n\sin x}{1+nx}$.

Définition 1.1.2. (Convergence simple)

Soit (f_n) une suite de fonctions définies sur $D \subset \mathbb{R}$. On dira que la suite de fonctions (f_n) converge simplement vers la fonction f sur D si et seulement si, en tous points x de D la suite numérique $(f_n(x))$ converge vers le réel f(x) c'est à dire $\forall x \in D \lim_{n \to +\infty} f_n(x) = f(x)$. Autrement dit:

$$(\forall x \in D) (\forall \epsilon > 0) (\exists n_0(\epsilon, x) \in \mathbb{N}):$$

$$n \ge n_0 \Rightarrow |f_n(x) - f(x)| < \epsilon \quad (1.1)$$

Définition 1.1.3. (Convergence uniforme)

Soit (f_n) une suite de fonctions définies sur $D \subset \mathbb{R}$ à valeurs dans \mathbb{R} ou \mathbb{C} convergeant simplement vers la fonction f sur D. On dit que la suite (f_n) converge uniformément vers la fonction f sur D si et seulement si

$$\lim_{n\to+\infty} \left(\sup_{x\in D} |f_n(x)-f(x)|\right) = 0$$
. Autrement dit

$$(\forall \epsilon > 0) (\exists n_0(\epsilon) \in \mathbb{N}) (\forall x \in D):$$

$$n > n_0 \Rightarrow |f_n(x) - f(x)| < \epsilon \quad (1.2)$$

Remarque 1.1. Si $\lim_{n\to+\infty} \left(\sup_{x\in D} |f_n(x)-f(x)|\right) = 0$ alors $(\forall x\in D) \lim_{n\to+\infty} |f_n(x)-f(x)| = 0$. Donc la convergence uniforme entraı̂ne la convergence simple. La réciproque étant **fausse**!

Exemple 1.1.2. La suite de fonction définie par $f_n(x) = x^n$ pour tout $n \in \mathbb{N}$ sur [0,1] converge simplement mais non uniformément vers

$$f(x) = \begin{cases} 0 & \text{si } x \in [0, 1[\\ 1 & \text{si } x = 1 \end{cases}$$

 $\operatorname{car} \sup_{x \in [0,1]} |x^n - 0| = 1 \text{ pour } n \in \mathbb{N}^*$

Proposition 1.1.1. (Conditions suffisantes)

Soit $D \subset \mathbb{R}$ et (f_n) une suite de fonctions définies sur D telles que (f_n) converge simplement vers la fonction f sur D.

1. Pour que la suite (f_n) converge uniformément vers la fonction f sur D il suffit qu'il existe une suite (ε_n) de réels positifs de limite nulle telle que

$$(\forall x \in D) \quad |f_n(x) - f(x)| \le \varepsilon_n$$

2. Pour que la suite (f_n) ne converge pas uniformément vers la fonction f sur D il suffit qu'il existe une suite (x_n) de points de D telle que la suite

$$\left(\left|f_n(x_n) - f(x_n)\right|\right)_{n \in \mathbb{N}}$$

ne tende pas vers 0.

Remarque 1.2. Lorsqu'on doit étudier la convergence d'une suite de fontions (f_n) définies sur $D \subset \mathbb{R}$ on commence par déterminer la limite simple f (qui est donc l'application qui à tout $x \in D$ associe la limite de la suite $(f_n(x))$ lorsque n tend vers l'infini) puis on regarde si cette convergence est ou n'est pas uniforme. Comme il n'y a en cette matière aucune règle on commence par rechercher un contre exemple c'est à dire une suite (x_n) de points de D telle que $|f_n(x_n)-f(x_n)|$ ne tende pas vers 0 lorsque n tend

ver l'infini : on peut tenter une suite qui tend vers l'une des extrémités de D ou essayer de rendre $f_n(x)$ constant dans le cas où $f \equiv 0$. Si malgré plusieurs essais infructueux on ne trouve pas de telle suite on peut alors essayer de montrer la convergence uniforme par différentes méthodes : majoration uniforme de $|f_n(x) - f(x)|$ par une suite (ε_n) de limite nulle, détermination du sup si c'est un max par l'étude de la fonction $x \mapsto f_n(x) - f(x)$ par exemple.

1.2 Théorèmes de la convergence uniforme

Proposition 1.2.1. (Continuité)

Soit $D \subset \mathbb{R}$ et (f_n) une suite de fonctions définies sur D. Si chaque f_n est continue et si la convergence de (f_n) vers f est uniforme sur D alors f est continue sur D.

Remarque 1.3. La convergence uniforme conserve la continuité mais ne la crée pas. Si les f_n ne sont pas continues sur D on ne peut rien dire de la continuité de la fonction limite simple sur D même si la convergence se révèle être uniforme.

Remarque 1.4. Par contre la proposition 1.2.1 fournit un critère simple de non convergence uniforme : Si la fonction limite f n'est pas continue sur D mais que chaque f_n l'est, alors la convergence de (f_n) vers f sur D ne peut être uniforme.

Plus généralement on a la :

Proposition 1.2.2. (Théorème de la double limite) $Soit D \subset \mathbb{R}$ et (f_n) une suite de fonctions définies sur D. Soit a un point de D ou une borne de D (éventuellement infinie). Si la suite de fonctions converge uniformément Sur D alors :

$$\lim_{x \to a} \left(\lim_{n \to +\infty} f_n(x) \right) = \lim_{n \to +\infty} \left(\lim_{x \to a} f_n(x) \right)$$

Proposition 1.2.3. (Intégration)

Soient a et b deux réels tels que a < b et (f_n) une suite de fonctions continues par morceaux et définies sur [a,b], convergeant simplement sur [a,b] vers une fonction f. Si la suite (f_n) converge uniformément sur [a,b] vers f alors f est continue par morceaux et :

$$\lim_{n \to +\infty} \int_a^b f_n(x) dx = \int_a^b \left(\lim_{n \to +\infty} f_n\right)(x) dx$$

Proposition 1.2.4. (Théorème de convergence dominée de Lebesgues)

Soit (f_n) une suite de fonctions continues par morceaux et définies sur un intervalle $I \subset \mathbb{R}$ à valeurs réelles ou complexes.

Si

1. La suite (f_n) converge simplement vers la fonction f continue par morceaux sur I;

2. Il existe une fonction φ de I dans \mathbb{R}_+ , intégrable sur I et telle que

$$(\forall x \in I) \ (\forall n \in \mathbb{N}) \quad |f_n(x)| < \varphi(x)$$

alors la fonction f est intégrable sur I (l'intégrale de sa valeur absolue converge sur I) et on a

$$\int_{I} f(x)dx = \int_{I} \left(\lim_{n \to +\infty} f_{n}\right)(x)dx$$

$$= \lim_{n \to +\infty} \int_{I} f_{n}(x)dx \quad (1.3)$$

Proposition 1.2.5. (Caractère C^1)

Soient a et b deux réels tels que a < b et (f_n) une suite de fonctions de classe C^1 définies sur [a,b].

- 1. La suite (f_n) converge simplement vers une fonction f sur [a,b] (et même si seulement $\lim_{n\to+\infty} f_n(a)$ existe)
- 2. La suite (f'_n) des dérivées converge uniformément sur [a,b].

Alors la fonction f est C^1 sur [a,b] et on a

$$\frac{d}{dx} \Big(\lim_{n \to +\infty} f_n \Big)(x) = \lim_{n \to +\infty} \Big(\frac{d}{dx} f_n(x) \Big)$$

Remarque 1.5. On montre que les hypothèses de la proposition précédente entraînent la convergence uniforme de (f_n) vers f sur [a, b].

1.3 Applications de la convergence uniforme

Proposition 1.3.1. (Théorème de Weierstrass)

Toute fonction continue sur un segment $[a,b] \subset \mathbb{R}$ à valeurs réelles est limite uniforme sur [a,b] d'une suite de fonctions polynômiales.

Proposition 1.3.2. (Théorème de densité)

Toute fonction continue sur un segment $[a,b] \subset \mathbb{R}$ à valeurs réelles est limite uniforme sur [a,b] d'une suite de fonctions en escalier.

2 Séries de Fonctions

2.1 généralités

Définition 2.1.1. (Séries de Fonctions et Convergence Simple)

Soit (f_n) une suite de fonctions définies sur $D \subset \mathbb{R}$. A partir de cette suite de fonctions on forme une seconde suite $(S_n)_{n\in\mathbb{N}}$ définie pour tout n par

$$S_n = f_0 + f_1 + \cdots + f_n$$

appelée la suite des (fonctions) sommes partielles associée à la série de fonctions $\sum_{n>0} f_n$ définie sur D.

On dira que cette série de fonctions converge simplement sur D si et seulement si la suite de fonctions (S_n) converge simplement vers une fonction S, appelée somme de la série de fonctions sur D, c'est à dire si

$$(\forall x \in D) \lim_{n \to +\infty} S_n(x) = S(x) = \sum_{n=0}^{+\infty} f_n(x).$$

Exemple 2.1.1.
$$\sum_{n\geq 1} \frac{\ln\left(n+e^{nx}\right)}{n^3}$$
, $\sum_{n\geq 1} \frac{1}{n} \arctan \frac{x}{n}$, etc.

Définition 2.1.2. (Convergence absolue)

On dira que la série de fonctions $\sum_{n\geq 0} f_n$ converge absolument sur $D\subset \mathbb{R}$ si et seulement si la série de fonctions à valeurs positives $\sum_{n\geq 0} |f_n|$ converge simplement sur D.

Proposition 2.1.1. Toute série de fonctions absolument convergente sur $D \subset \mathbb{R}$ est simplement convergente sur D. Autrement dit la convergence absolue entraı̂ne la convergence simple.

2.2 Convergence normale

Définition 2.2.1. (Norme infinie)

Soit D un sous ensemble de \mathbb{R} . Pour toute fonction définie sur D on appelle, sous réserve d'existence, norme infinie de f sur D et on note $||f||_{\infty,D}$ la borne supérieure de l'ensemble

$$\{ |f(x)| \mid x \in D \}$$

Définition 2.2.2. (Convergence Normale)

Soit $\sum_{n\geq 0} f_n$ une série de fonctions définies sur D. On dira que cette série de fonctions converge normalement sur D si et seulement si la série numérique $\sum_{n\geq 0} \|f_n\|_{\infty,D}$ est convergente.

$\begin{array}{lll} \textbf{Proposition} & \textbf{2.2.1.} & (Condition & suffisante & de \\ convergence & normale) \end{array}$

Soit $\sum_{n\geq 0} f_n$ une série de fonctions définie sur D. Pour que cette série de fonctions converge normalement sur D il suffit qu'il existe une série numérique à termes positifs convergente $\sum_{n\geq 0} \varepsilon_n$ vérifiant

$$(\forall x \in D) |f_n(x)| \le \varepsilon_n$$

2.3 Convergence uniforme

Définition 2.3.1. (Convergence uniforme)

La série de fonctions $\sum_{n\geq 0} f_n$ définie sur D est dite uniformément convergente sur D si et seulement si l'une des deux conditions équivalentes suivantes est vérifiée :

- 1. La suite (de fonctions) des sommes partielles (S_n) converge uniformément vers la somme $S: x \mapsto \sum_{n=0}^{+\infty} f_n(x)$ de la série de fonctions sur D.
- 2. La suite (de fonctions) des restes d'ordre n (R_n) de la série de fonctions $\sum_{n\geq 0} f_n$ converge uniformément vers la fonction nulle sur D.

Proposition 2.3.1. Toute série de fonctions normalement convergente sur $D \subset \mathbb{R}$ est uniformément convergente sur D.

Conséquence 2.3.1. On retiendra les relations entre les différents modes de convergence des séries de fonctions :

1. La convergence normale entraı̂ne tous les autres modes de convergence :

$$CVN \Rightarrow CVU \Rightarrow CVS$$

de même:

$$CVN \Rightarrow CVA \Rightarrow CVS$$

2. Mais la convergence uniforme et la convergence absolue sont deux modes de convergence indépendants l'un de l'autre.

$$CVU \Rightarrow CVA$$

 et

2.4 Propriétés de la fonction somme

Les propositions qui suivent sont (à l'exception de la version ¡¡Lebesgues¿; de l'intégration terme à terme) une adaptation directe des propositions du paragraphe 1.2

Proposition 2.4.1. (Continuité)

Soit $\sum_{n\geq 0} f_n$ une série de fonctions définie sur $D \subset \mathbb{R}$. Si chaque f_n est continue sur D et si la série de fonctions converge uniformément vers S sur D alors la fonction $x \mapsto S(x) = \sum_{n=0}^{+\infty} f_n(x)$ est continue sur D.

Remarque 2.1. Comme la continuité en un point x_0 de \mathbb{R} est une propriété locale, pour obtenir la continuité sur un intervalle non borné de \mathbb{R} il suffit d'assurer la convergence uniforme sur tout segment $[a,b] \subset D$ (convergence uniforme sur tout compact de D).

Proposition 2.4.2. (Théorème de la double limite) Soit $\sum_{n\geq 0} f_n$ une série de fonctions définie sur $D \subset \mathbb{R}$ et a un point de D ou une borne de D.

Si cette série de fonctions converge uniformément sur D alors

$$\lim_{x \to a} \sum_{n=0}^{+\infty} f_n(x) = \sum_{n=0}^{+\infty} \lim_{x \to a} f_n(x)$$

Proposition 2.4.3. (Intégration terme à terme)

Soit $\sum_{n\geq 0} f_n$ une série de fonctions définie sur [a,b] a et b étant deux réels (a < b), telle que chaque f_n soit continue par morceaux sur [a,b] et convergeant simplement vers S sur [a,b].

Si la série de fonctions converge uniformément sur [a,b]

vers S alors S est continue par morceaux sur [a,b] et on a:

$$\int_a^b S(x)dx = \int_a^b \left(\sum_{n=0}^{+\infty} f_n(x)\right) dx = \sum_{n=0}^{+\infty} \int_a^b f_n(x) dx$$

u

Proposition 2.4.4. (Version Lebesgues) Soit $\sum_{n\geq 0} f_n$ une série de fonctions définies et continues par morceaux sur $D \subset \mathbb{R}$. Si :

- 1. La série de fonctions converge simplement vers la fonction S continue par morceaux sur D.
- 2. $(\forall n \in \mathbb{N}) \int_{D} |f_n(x)| dx$ existe et est finie (chaque f_n est intégrable sur D).
- 3. La série (numérique) $\sum_{n\geq 0} \int_D |f_n(x)| dx$ converge. Alors la fonction somme $x\mapsto S(x)$ est intégrable sur D et on a:

$$\int_{D} S(x)dx = \int_{D} \left(\sum_{n=0}^{+\infty} f_n(x)\right) dx = \sum_{n=0}^{+\infty} \int_{D} f_n(x) dx$$

Remarque 2.2. On utilisera la première version du théorème d'intégration terme à terme lorsqu'on aura pu établir la convergence uniforme de la série de fonctions sur un segment [a,b] de $\mathbb R$ et la version ¡¡Lebesgues¿¿ lorsque l'on a juste la convergence simple sur un segment de $\mathbb R$ ou lorsque l'on se place sur un intervalle non borné ou non fermé de $\mathbb R$.

Proposition 2.4.5. (Caractère C^1 et dérivation terme à terme)

Soit $\sum_{n\geq 0} f_n$ une suite de fonctions définies et de classe \mathcal{C}^1 sur $[a,b]\subset \mathbb{R}$. Si

- 1. la série de fonctions $\sum_{n\geq 0} f_n$ converge simplement vers la fonction S sur [a,b].
- 2. la série des dérivées $\sum_{n\geq 0} f'_n$ est uniformément convergente sur [a,b]

alors la fonction somme S est C^1 sur [a,b] et on a

$$\frac{d}{dx}\sum_{n=0}^{+\infty}f_n(x) = \sum_{n=0}^{+\infty}\frac{d}{dx}f_n(x)$$

Remarque 2.3. De même que dans la proposition 2.4.1 on peut utiliser cette dernière proposition pour établir le caractère C^1 de la somme d'une série de fonctions définies sur un intervalle non borné D de \mathbb{R} . Il suffit de l'appliquer localement au voisinage d'un point x_0 quelconque de D.

Remarque 2.4. Pour la continuité et la dérivabilité d'une fonction définie par la somme d'une série : $x \mapsto \sum_{n=0}^{+\infty} f_n(x)$ on a besoin (au minimum) de la convergence uniforme au voisinage des points x considérés (et bien sûr

de la continuité de chaue f_n).

Si la convergence simple de $\sum_{n\geq 0} f_n$ a été établie sur un domaine non borné D de $\mathbb R$ mais qu'il n'y a pas de convergence normale sur D ou si la convergence uniforme est délicate à établir sur D on pourra, dans le cas où les f_n sont monotones, utiliser cette monotonie pour récupérer de la convergence normale sur des segments ou des fermés non bornés de D.

Par exemple, si les f_n sont décroissantes sur D et qu'on peut y inclure un intervalle de la forme I = [a, b] (ou $I = [a, +\infty[)$ et que l'on cherche à démontrer la continuité de S en x on inclut ce x de D dans un tel I et la majoration

$$(\forall x \in I) \quad f(x) \le f(a)$$

établit la convergence normale de $\sum f_n$ sur I puisque la convergence simple assure que f(a) est le terme général de la série numérique convergente $\sum_{n=0}^{+\infty} f_n(a)$.

L'application de la proposition 2.4.1 assure alors la continuité sur I, donc en x et comme x est quelconque sur D tout entier.

Mais attention : ceci ne prouve pas que la série converge normalement sur D et en général c'est précisément en cas de non convergence normale sur D qu'on utilise ce genre de raisonnement.